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J. Phys. A: Math. Gen. 22 (1989) 3253-3266. Printed in the U K  

New twists to Einstein’s two-slit experiment: complementarity 
ois-ti-uis the causal interpretation 
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t Physics Department, Bose Institute, Calcultta 700009, India 
$ Laboratoire de Physique Theoriquel, Institute Henri PoincarC, 11 rue Pierre et Marie 
Curie, 75231 Paris, Cedex 05, France 

Received 19 October 1988 

Abstract. We consider the new adaptations of Einstein’s two-slit experiment in terms of 
recently performed experiments with neutrons, and analyse them in the light of the 
complimentarity principle. We constrast this with the description in terms of the de 
Broglie-Bohm causal interpretation. 

1. Introduction 

In recent years there has been renewed interest in conceptual ramifications of Einstein’s 
two-slit experiment [ 1-31, particularly in view of the experimental realisation of some 
of its new variants. In the present paper we seek to analyse critically the interpretation 
of these experiments from the point of view of the complementarity principle and 
contrast this with the description in terms of the de Broglie-Bohm causal interpretation. 
We also comment on some interesting issues raised by these experiments. 

Einstein’s two-slit experiment (figure 1) has now become a classic example for 
exhibiting the peculiar particle-wave duality of the quantum theory. It is well known 
that using the arrangement of figure 1, Einstein sought to determine the photon 
(electron, etc) trajectory without destroying the interference pattern. Equally well 
known is Bohr’s rebuttal using the position-momentum uncertainty relations. The 

Figure 1 .  Einstein’s low-intensity two-slit experiment. A spring is attached to screen S, 
allowing the determination of the photon trajectory by measurement of the ‘momentum 
kick’ to the screen. 
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important point here is that this experiment (and other hypothetical experiments 
proposed by Einstein to attack the completeness of the Copenhagen formalism) dealt 
with the mutually exclusive situations of either perfect particle knowledge or perfect 
wave knowledge. Surprisingly ‘in-between experiments’ were not considered until the 
interesting 1979 analysis of Wootters and Zurek [4]. Using the hypothetical arrange- 
ment of figure 1 they showed that it is possible to obtain partial wave knowledge and 
partial particle knowledge from the same experimental arrangement. Indeed, they 
arrived at the surprising result that it is possible to determine with 99% certainty the 
photon trajectory whilst still retaining a significant interference pattern. They concluded 
that Bohr’s complementarity principle was limited and not able to properly accommo- 
date such ‘in-between experiments’. Thus, they were led to state their version of the 
complementarity principle [4, p 4811: ‘The sharpness of the interference pattern can 
be regarded as a measure of how wave-like the light is, and the amount of information 
we have obtained about the photons’ trajectories can be regarded as a measure of 
how particle-like it is’. The question immediately arises as to whether or not the above 
statement is merely an extension of the complementarity principle to ‘in-between 
experiments’ or whether it is consistent with Bohr’s complementarity at all. To answer 
this question we must consider Bohr’s complementarity principle. 

2. The complementarity principle 

In this short paper we cannot hope to do justice to the subtleties and generality of 
Bohr’s thesis but refer the reader to Bohr’s original writing, particularly [3] but also 
[5-71. We will therefore limit ourselves to short extracts from Bohr’s writings which 
we feel best characterise complimentarity in the context of this discussion. 

In [3,p210] Bohr writes ‘however far the phenomena transcend the scope of 
classical physical explanation the account of all evidence must be expressed in classical 
terms’. He continues, ‘this crucial point . . . implies the impossibility of any sharp 
separation between the behaviour of atomic objects and the interaction with the 
measuring instruments which serve to define the conditions under which the phenomena 
appear. . . . Consequently evidence obtained under different experimental conditions 
cannot be comprehended within a single picture but must be regarded as complementary 
in the sense that only the totality of the phenomena exhausts the possible information 
about the objects. Under these circumstances an essential element of ambiguity is 
involved in ascribing conventional physical attributes to atomic objects as is at once 
evident in the dilemma regarding the corpuscular and wave properties of electrons 
and photons where we have to make do with contrasting pictures each referring to an 
essential aspect of empirical evidence. 

In another article [5, p 901 Bohr writes ‘As repeatedly stressed the principal point 
is here that such measurements demand mutually exclusive experimental arrangements’. 

Extrapolating from the above it seems to us that Bohr would have regarded the 
‘in-between experiments’ as simply experiments which do not allow the unambiguous 
definition of either wave-like or particle-like properties, and that he continually 
emphasised that such classical concepts (language) could only be used in the context 
of an experiment in which they could be unambiguously defined. Thus, he also 
emphasised that the experimental arrangement and quantum system should be viewed 
as a whole, not analysable into separate parts. Indeed, he maintained that such an 
analysis was impossible [3, p 2351. In other words, any attempt to associate with a 
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quantum system alone the attribute of wave or particle is meaningless. Only by 
consistently maintaining this position, which amounts to denying the possibility of 
describing the underlying physical reality, could Bohr consistently reconcile the Copen- 
hagen interpretation with Einstein’s probing experiments. 

We must conclude therefore that the Wootters and Zurek definition of complemen- 
tarity is not consistent with that of Bohr. Statements such as ‘how wave-like’ or ‘how 
particle-like’ the nature of light surely have no meaning in the context of Bohr’s 
complementarity. What this highlights, as indeed did the whole analysis of Wootters 
and Zurek and the actual experiments which followed, is the need for a new unam- 
biguous way of talking about quantum experiments. This is in agreement with another 
conclusion of Wootters and Zurek. The present authors would go further and suggest 
the need for a description of underlying physical reality in terms of a clear unambiguous 
well defined model. Such a model exists, namely the de Broglie-Bohm causal interpreta- 
tion. To exemplify our point we shall give a brief review of actual experiments with 
neutrons confirming the predictions of Wootters and Zurek and contrast their descrip- 
tions with that of the causal interpretation. 

In passing we note that the first confirmation of the Wootters and Zurek result was 
by Mittelstaedt et af [8] using a modified Mark-Zender interferometer with a variable 
partially reflecting mirror to recombine the two photon beams. However, the principle 
remains the same for the more recent neutron interferometer experiments and, because 
of their simplicity, we will therefore only consider the latter. 

3. Neutron interferometer experiment with static absorber 

We consider first the neutron interferometer arrangement of figure 2 with a static 
absorber in one of the paths and with only one neutron (on average) passing through 
the instrument at any one time. This experiment has been performed by Rauch and 
Summhammer [ 9 ] .  

Figure 2. Neutron interferometer. F may be either a static absorber or (right) a time- 
dependent absorber having 100% absorbing efficiency. 

The static absorber (attenuator) reduces the intensity of one of the neutron beams. 
Depending on the degree of attenuation, a neutron path can be determined with high 
or low probabilty (50’/0 for the usual no-attenuation case). 

Following Greenberger [ 101 we can imagine a screen D recording an interference 
pattern, which in practice is determined by counters at S, and S2,  to simplify the 
discussion. The appropriate wavefunction is a superposition of the attenuated-beam and 
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unattenuated-beam wavefunctions, 

(1, = J;;+B + +c exp(ix) (1) 

where a, O <  a < 1, is the probability for a neutron to pass through the static absorber 
and ,y is the phase difference. The intensity is given as usual by 

I = / $ I 2 =  aI(LB12+19c/2+2&+B(CIC cos x. ( 2 )  

The possibility of determining the neutron path with high probability whilst retaining 
a significant but reduced-contrast interference pattern is clearly indicated by the 
proportionality of the beam intensity to a, whilst the amplitude of the interference 
term is proportional to a. Rauch and Summhammer were able to achieve attenuation 
as low as 0.9%. In other words, the neutron path can be determined with 99% certainty 
and yet retain an observable interference pattern - a striking result indeed. 

Counter-intuitive as quantum mechanics often is, are we not left with a mental 
wrestling match between the two mutually exclusive classical concepts of wave and 
particle? Or are we happy to follow Bohr and refuse to grasp the underlying mechanism 
at all or, worse, simply to live with the ambiguous use of wave and particle concepts? 

Greenberger and Yasin [ 101 have replaced the rigorous information theory analysis 
of Wootters and Zurek by a simpler quantification of the wave and particle knowledge 
obtainable from a single experiment in terms of a single parameter. Since their results 
are very close to those of Wootters and Zurek, and since the treatment in terms of a 
single parameter is more convenient for a causal description of this experiment, we 
shall make use of i t  in this section. We thus briefly introduce the Greenberger and 
Yasin analysis. 

Replacing the wavefunction (1) by 

9 = ( R ,  exp(iK,x)+ R2 exp(ix) exp(-iK,x)) exp(iK,Z) exp(-iwt) (3) 

the intensity is given by 

I $ / ’ =  R : +  R : + ~ R ~ R ~ c o s ( ~ K , ~ x - x )  (4) 

where x is again the phase difference. Greenberger and Yasin defined the contrast of 
the interference pattern, representing wave behaviour, as 

and that representing particle behaviour as 

The ingenious trick is to represent R ,  and R2 in terms of a single parameter, say p, 

( 5 )  R I  = LY COS p 
so that W = sin(2p) and P = cos(2p). They were then able to express the dual wave 
and particle knowledge by 

P’+ w’= 1. 

R2 = cy sin /3 

We note that the restriction to wave and particle knowledge is certainly consistent 
with Bohr’s complementarity, but we can go no further within the standard formalism. 
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Let us proceed therefore with the description in terms of the de Broglie-Bohm 
causal interpretation, after first recollecting its essential features. We begin by substitut- 
ing $ = R exp(iS/fi) into the Schrodinger equation, which allows its decomposition 
into two real equations; a continuity equation and a Hamilton-Jacobi-type equation. 
R = R(x, t )  and S = S(x, t )  are regarded as two real fields which codetermine each 
other, as reflected by the complex nature of the wavefunction. Comparison of the 
Hamilton-Jacobi equation with its classical counterpart reveals an extra term, which 
Bohm called the quantum potential, Q, 

h' V2R(x,t)  
2m R(x , t )  ' 

Q(x, r )  = -- 

Electrons, neutrons, etc, are assumed to be real definite particles in the classical sense, 
and these are guided by the quantum potential. By analogy with classical Hamilton- 
Jacobi theory the momentum is assumed to be given by VS. Particle trajectories can 
be obtained by integrating u = VS/m, with given initial particle positions. In the 
quantum theory these cannot be measured without disturbing the momentum, thereby 
changing the whole nature of the experiment, and these are the hidden parameters of 
the causal interpretation. Instead, we must assume initial particle positions, and as 
long as these are chosen in accordance with the initial probability density $*(x, t)$(x, t )  
we shall obtain consistent results. The form of the quantum potential is determined 
as much by the experimental apparatus (environment) as by the particle itself. Thus, 
the quantum particle and apparatus form a whole in just the way Bohr brilliantly 
recognised, only the description is achieved with a simple, unambiguous and well 
defined model which does away with the need for the subtle and complex (and perhaps 
physically unreasonable) rationale of Bohr's complementarity. 

The use of plane waves for the description of interference phenomena is often 
adequate, but such solutions are nevertheless only idealisations. To proceed with a 
causal description it is more interesting and more realistic to use wavepackets. In 
particular, Gaussian wavefunctions serve adequately for this purpose. We shall con- 
tinue to use the Greenberger simplification of replacing the final crystal face by a 
screen, as we are only concerned with describing the effects of the attenuation of one 
of the beams, and since a causal description of neutron interferometry has already 
been given by Dewdney [ l l ]  (see also an earlier article on the causal description of 
optical interference [ 121). Because plane waves have served as such useful idealisations 
we shall, however, return to a brief description of plane wave interference in terms of 
the causal interpretation. Thus, consider the superposition of two Gaussian wave- 
functions 

( X + X " - u t y  i a t (x+x, -  ut)' 
i , = R , (  Ax:+ 2r iat )I"exp( - 2Ax' ) 2Ax: 

x exp[iK(x + xo) - i w t  + i K,.] ( 7 )  
( x - x u +  of)') exp(iat(x-x,+ ut)' 

$;=R,( Ax;+ ?" i a t  ) l i2exp(  - 2Ax' 2Ax; 

x exp [ iK(x  - x,) - iw t  + iK, + ix]. (8) 
I), is a Gaussian with centre at -xo at t =0,  moving in the +x  and +y directions and 
is of half-width Ax,. qh2 is a packet of the same width Ax,, with centre at +x, at time 
t = 0, moving in the -x and + y  directions. The amplitudes RI  and R2 are still given 



3258 D Home and P N Kaloyerou 

by ( 5 )  and characterise the attenuation of the beams in terms of p. The total wavefunc- 
tion is 

c L = $ 1 + + 2  

giving a probability density +*+ = R2, 

R2 = 2lr [ Rfexp(  - ( x + x o - u t ) 2  (x - xo + u t ) 2  
(Ax:+ a2t2)”2 Axz 

+2R,R2 exp( - 
( X 2 + X i +  u2t2-2aut) 

Ax2 

2CrlX(Xo- u t )  

Ax: 

with 

(9) 

Ax: = (Ax:+ a2t2) .  
h 
m 

a=- 

The causal description proceeds by equating R exp(iS/ h )  to +, from which we can 
obtain the quantum potential (6), 

x2 1 x N(x , t )  1 N(x, t )  1 M(x, t )  Q(x, t )  =7=--- --- -+- - (10) Axo Ax: Ax2 J (x , t )  4 J ( x , t ) ’  2 J (x , t )  

with 

Zat(x0- u t )  
N(x, t )  = -Rig exp(-gx)+ R:exp(gx)-2 

Ax: 

2axt(xo- u t )  

Ax: 

2at(xo - u t )  M(x,r )  = R:g2 exp(-gx)+ R:g’exp(gx)-2 
Ax: 

2(YXf(Xo- V I )  

Ax: 

exp( -2x(x0- u t )  

AX2 
J(x, t )  = R: ) +R~exp[2x(xo-v t ) l+2RlR2 

2xat(xo- u t )  

Ax: 
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where 

2 ( x , - u t )  
g =  bX2 * 

From ( 5 )  we see that p = 7r/4 represents equal beam intensities and corresponds 
to the usual two-slit case with a maximum-contrast interference pattern. Figure 3 
shows 3~ plots of the intensity R 2 ,  the quantum potential and plots of the corresponding 
trajectories. 

As we have said, particle trajectories can be obtained by integrating u = V S / m ,  
with assumed initial particle positions, which in the present case means integrating 
the following differential equation, assuming a Gaussian distribution of initial particle 

Figure 3. Top: the intensity R' for two superposed Gaussian wavefunctions, as viewed 
from the screen. Middle and bottom: the corresponding quantum potential and trajectories. 
p = 0 . 5 ~ / 2 ,  which is the usual case of equal-beam intensities giving maximum contrast 
interference. Phase ,y = 0, maximum r = 1.9 x with the other constants having values 
K = 10- rad m-' ,  Ax, = 6 x IO-' m and x,, = 6 x m. 
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positions at each slit (i.e. the probability distribution given by (9) for t = 0): 

dy hK hK t --Y - 
d t  m m :.y( t )  = L+ c r (  t )  = x (  t ) i + y (  r ) j  

-- dx -- 2 a ( x o - ~ t )  [ ( R : + R : )  tan(@) (*) (LAx’-Hat)  
d t  Ax2(L2+  H 2 )  Ax; 

- ( R :  - R:)(  q) (Lat  + H Ax’) ]  
AX 1 

+ L [ 2 K +  2at (xo-  u t )  
L ~ +  H~ Ax: 

x (LAX’ - H a t )  - 2 R 1 R 2  tan(@) sec(w) (%) (Lnr + H A x 2 ) ]  

a2 tx  +- 
~ A X :  

Ax: 

H = 2 A ( R :  - R : )  tan(w) - 2 B ( R : +  R: )  -4BR1 R2 sec(@) 

L = 2B( R:  - R : )  tan(@) + 2 A ( R ;  + R : )  + 4 A R 1 R 2  sec(w) 

This differential equation can be easily integrated numerically using, for example, 
the standard fourth-order Runge-Kutta method (with adaptive step size). 

From figure 3 we see that the intensity of the quantum potential varies in space 
providing allowed and forbidden paths. Particles entering the troughs (which extend 
to minus infinity in the case of maximum contrast) experience a force, given by the 
negative gradient of the quantum potential, which accelerates them through the trough 
to the next allowed path. We notice that each particle only passes through one trough, 
and therefore no particle ever crosses the central axis of symmetry ( x  = 0 axis). The 
particles are thus guided to the bright fringes. This replaces the so-called ‘particle-wave 
duality’ by a simple well defined model. For the non-relativistic case the quantum 
object is always a particle, its wave behaviour is determined by the form of the quantum 
potential, which is very sensitive to the nature of the apparatus (environment). 

High or low values of p represent large attenuation of one or other of the beams. 
Figure 4 shows 3~ plots of the intensity R2,  the quantum potential and corresponding 
trajectories for p = 0 . 3 ~ / 2 ,  which represents attenuation of the CL2 beam (the right-hand 
beam in figure 4 and the upper beam in figure 2) .  In figure 5 we have plotted the 
intensity R2 and the quantum potential for three different values of p = 0 . 5 ~ / 2 , 0 . 3 ~ / 2  
and 0 . 1 ~ / 2 .  We see that the minima of the troughs increase (and are finite) with 
increasing attenuation, presenting shallower gradients and therefore smaller forces to 
the particles. This means that more particles can reach regions corresponding to dark 
fringes in the maximum contrast case. The trajectories plot of figure 4 clearly shows 
this. Notice that the troughs of the quantum potential have increased minima and 
shallower gradients on the side of the unattenuated beam, tending more and more to 
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Figure 4. Top. The intensity R 2  for two superposed Gaussian wavefunctions, as viewed 
from the screen for p = 0 . 3 ~ / 2  (right beam is attenuated). Middle and bottom: the 
corresponding quantum potential and trajectories, clearly indicating reduced interference 
as compared with the maximum contrast case. The various constants have the same values 
as for the plots in figure 3.  

a single-slit pattern as the attenuation of the other beam is increased. That a detectable 
interference pattern is maintained is simply a fact of the experimental configuration 
which gives rise to a quantum potential where gradients are of a sufficient strength to 
produce the interference pattern, and there are no strange implications on the basis 
of our description. 

At this point it is worthwhile to pause and consider the magnitudes of the physical 
quantities involved. Typically, the neutron interferometer is about 8 cm wide and 7 cm 
in length, and cut from a perfect silicon crystal. The neutron velocities are of the order 
of lo3 m s-’. The beam cross section may be 1 cm2 or larger and the two beams 
separated by a few cm at the middle-crystal face, whilst the width in the longitudinal 
direction ( y  direction) is approximately 0.03 cm. These quantities define the dimensions 
of the wavepacket. For our plots, however, we have chosen numbers to amplify the 
effects we want to show, and so the numbers shown in figures 5 and 6 should not be 
taken too literally, except that they reflect the correct order of magnitude of the quantum 
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Figure 5. Top. The quantum potential for two superposed Gaussian wavefunctions for 
three values of p = 0 . 5 ~ / 2 , 0 . 3 ~ / 2  and 0.1 7r/2 (corresponding to a decrease in the intensity 
of the beam). Bottom: corresponding plot for the probability density R i  for the same 
values of p showing reduced contrast with decreasing p. In both cases phase = 0, and 
maximum t = 1.9 x m 
and xo = 6 x lo-' m. 

Other constants have the values K = IO' rad m-', Ax, = 6 X 

potential. For our plots we have chosen K = lo7 rad m-'Ax,= 6 x m and xo= 
6 x lo-* m. 

Briefly, let us return to consider plane-wave interference. Again, equating 
R exp(iS/h) to the wavefunction (3) we can obtain the quantum potential correspond- 
ing to the superposition of two plane waves: 

+ 
Q ( x l t )  =G h2  ( [ l/sin(ZP) +cos(2Kx --x)]' l Is in(2p)  +cos(2Kx -x) 
which we have plotted in figure 6 for /3 = 0 . 4 9 9 ~ / 2 ,  0 . 3 ~ / 2  and 0 . 1 ~ 1 2 .  In the case 
of maximum contrast, p = 0 . 5 ~ / 2 ,  the trough widths become negligible (which is why 
we have actually plotted for /3 = 0 . 4 9 9 ~ / 2  instead), still extending to -CO, and zero 
everywhere else. How is this form of the quantum potential to account for the well 
defined maximum-contrast peaks of R 2  (equation (4)) plotted in figure 6? This is not 
hard to answer if we notice that we are dealing with a time-independent problem. The 
intensity R 2  (9), and quantum potential (12), are completely independent of time (and 
of y ) .  They maintain the same form from the middle-crystal face to the screen. If we 
further consider the continuity equation, expressing the conservation of probability, 
then we expect the initial particle distribution at the middle-crystal face to be identical 
to the final distribution at the screen. In other words, in this case, the quantum potential 
does not guide the particle at all, but merely reflects the fact that absolutely no particle 
can reach regions where R2 = 0. 

(12) 1 K 2  sin2(2Kx -x) 2K' C O S ( ~ K X  - x )  
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X X ~ . I L X I O ' *  m 

Figure 6. Top: the quantum potential for two superposed plane waves for /3 = 0 . 4 9 9 ~ / 2 ,  
0 . 3 ~ / 2  and O.ln/2.  Bottom: corresponding R 2  plot for two plane waves. Constants have 
the same values as for the Gaussian case in figure 5 .  

Again, the reduced contrast when one beam is attenuated is explained by the 
increased trough minima, and therefore shallower quantum potential gradient, allowing 
more particles to reach otherwise dark regions (fringes) of the screen. 

This point is further substantiated when we work out the trajectories (which we 
have not plotted here) from the following integrated equations for x (  t )  and y (  t ) :  

r (  t )  = x (  t ) i  + y ( t ) j  

x ( t )  = 2 ( 1 + (E) *) - & [ 1 - (E) 2] x + [ 1 - (E) '1 sin(2 K x (  t ) - x ) 

where ,y is the phase, and G and F are constants of integration. 
For the usual maximum-contrast case the trajectories are simply straight lines 

perpendicular to the crystal face, so that the initial distribution ends up as the final 
one. When one beam is attenuated, the linear trajectories acquire a slight slope toward 
the side of the weaker beam, though so small that they remain practically perpendicular 
to the crystal face and screen over usual experimental distances. As we implied earlier, 
the more realistic Gaussian is certainly more interesting from the point of view of the 
causal interpretation. 



3264 D Home and P N Kaloyerou 

To summarise, we have accounted for the surprising result of Wootters and Zurek. 
Simply, in this model, a neutron, electron, etc, is always a particle. The variation in 
contrast of the interference pattern, due to the variation of the attenuation of one of 
the beams and, indeed, its very formation, is simply due to the form and intensity of 
the quantum potential. No paradoxical implications, no ambiguity! 

4. Time-dependent absorber 

Instead of an attenuator at F we may use a time-dependent absorber (chopper). The 
result in this case, as has been confirmed by Rauch and Summerhammer [9], is very 
different from that of the attenuator. Noting that the chopper material absorbs neutrons 
with 100% efficiency, we can identify definite time intervals when either both paths 
are available to the neutron, or when only one path is available. During the time 
interval A t , ,  when both paths are available, the emerging beams are described by the 
wavefunction 

*I = *s+ *c exp(ix). (14) 
In the next interval with only one path available, A t , ,  the emerging beam is described 
by $2,  

*;= * C .  (15)  
The overall wavefunction is a mixture 

* = ( * I  9 *2) (16) 
where +, = &[$,+ GC exp(ix)] and i,b2 = -Gc.  The probability a of a neutron 
to pass the chopper depends on the relative size of A t ,  (one path available), and A t ,  
(both paths available). The intensity is then given by the usual density matrix pre- 
scription 

We see that the amplitude of the interference term is reduced in proportion to the 
attenuation of the beam, and we do not expect to obtain from this experiment as much 
simultaneous wave and particle knowledge as for the case of the attenuator. This 
accords with the result of Wootters and Zurek that the maximum simultaneous wave 
and particle knowledge is obtainable from experimental arrangements described by 
pure states. 

The causal interpretation in this case corresponds to the switching of the quantum 
potential from the two-path to the one-path form. During the time interval when both 
paths are available, the quantum potential corresponds to that shown in figure 3 with 
the characteristic paths in space, as is easily seen by equating R exp(iS/h) to the 
wavefunction (9). This gives maximum-contrast interference. During the time interval 
with only one path available, the quantum potential is obtained by equating 
R exp(iS/ h )  to the wavefunction ( 1 9 ,  giving rise eventually to a typical single-path 
distribution at the screen (i.e. a single hump). This tends to wash out the interference 
produced during A t , .  Again the overall pattern is described by (16). 

I = 1 * 1 1 2  + = + l l c ~ ~ l ’  + 2 a v ~ ~  cos x. (17) 

5. Further remarks 

The marked difference in the contrast of the interference pattern for the case of a static 
absorber as compared with the time-dependent absorber is at first sight puzzling. Closer 
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analysis reveals, however, that the ensemble of neutrons contributing to the interference 
pattern in the case of the static absorber is bigger than in the case of the time-dependent 
absorber, even when the experiments are so arranged that the transmission probability 
a is the same in both cases. To see this, consider first the case of the time-dependent 
absorber. There will be no contribution to the interference pattern from any neutron 
entering the interferometer during the time intervals A t , ,  when only one path is 
available; the neutrons following the free path will contribute only to a characteristic 
single-path humped distribution, while neutrons taking the alternative path are simply 
stopped by the chopper, making no registration on the detector at all. Only the ensemble 
of neutrons made up of those neutrons entering the interferometer during all intervals 
A t , ,  when both paths are available, contribute to the interference pattern. 

In the case of the static absorber having the same probability a for transmission, 
all neutrons following the free path will contribute to the interference pattern. In 
addition, those neutrons following the alternative path which pass through the 
attenuator will also contribute to interference. Those neutrons which are actually 
absorbed by the attenuator are simply removed from the ensemble contributing to 
interference, since their absorption corresponds to a localisation measurement. The 
removal of these absorbed neutrons from the ensemble contributing to interference is 
taken into account by the probability term a appearing in wavefunction (1) describing 
this circumstance. Thus, there is a bigger ensemble of neutrons contributing to interfer- 
ence in the case of the static absorber. 

To throw some light on the difference between the two ensembles for the different 
experiments, let us briefly recall the measurement theory of the causal interpretation. 
In contrast to the usual interpretation there is no wavefunction collapse; rather the 
particle enters one of the possible eigenstates of a measurement, whilst the others 
remain empty. That it is overwhelmingly unlikely that the empty packets subsequently 
interact is due to their inevitable interaction with classical systems possessing many 
degrees of freedom. In the case of the static absorber the experimental configuration 
requires that we write a superposition of two wavefunctions. In these low-intensity 
experiments the physical particle will be represented by only one of the wavefunctions, 
whilst the other represents an empty wave. The attenuator will have no effect on this 
empty wave. The quantum potential corresponding to this situation will be that of 
figure 5 ,  producing reduced-contrast interference. 

In the case of the time-dependant absorber represented by a mixture, the wavefunc- 
tion will be either of two separate forms, so that when the chopper closes one of the 
paths there will be no accompanying empty wave to produce interference. 

Rauch and Summhammer posed a further interesting question concerning whether 
or not time-dependent absorbtion can possibly reproduce the results of a static absorber. 
They attempted to answer this question by using the energy-time uncertainty relations. 
They concluded that when the frequency of the chopper is either very fast or very slow 
relative to the time of flight of the neutron then the results of the time-dependent 
absorber approach those of the static absorber. 

Is the answer so clear cut, however? The wavefunction, ( l ) ,  for the static case is 
a superposition, but wavefunction (11) is a mixture. For the results of the time- 
dependent absorber to approach those of the static absorber we would expect wavefunc- 
tion ( l l ) ,  a mixture, to tend to wavefunction ( l ) ,  a superposition. This implies that 
wavefunction ( 1  1) should be a function of the frequency of the chopper, which it is 
not. The alternative is that the transition from a mixture to a superposition occurs 
suddenly at a particular frequency. Either way, the issue is not so clear cut and calls 
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for further study. In particular, it would be interesting to see the outcome of experiments 
in which the chopper frequency is made fast or slow (and random). 

6. Concluding remarks 

We have tried to compare the analysis of new issues raised by recent adaptations of 
Einstein’s two-slit experiment with Bohr’s original form of the complementarity prin- 
ciple. Whereas such experiments are certainly consistent with this principle, they 
further highlight the need for care in the use of classical concepts and language, at 
least if conceptual consistency is desired. Ultimately, as with the original two-slit (and 
other) experiments, consistency is achieved only by renouncing the possibility of 
describing the underlying physical reality. We have contrasted this with the alternative 
description in terms of the de Broglie-Bohm causal interpretation which provides 
exactly the simple clear and unambiguous description of underlying physical reality 
that Bohr considered impossible, even in principle. 

In 0 5 we focused attention on a further interesting issue raised by these experiments 
concerning the relation between mixtures and superpositions. 
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